

Microsoft SQL Data Services – Under the Hood

Writer: Jason Lee (Content Master)

Technical Reviewer: Alan Bush (Microsoft)

Published: October 2008

Applies to: SQL Data Services

Summary: SQL Data Services (SDS) is a cloud-deployed database service from Microsoft.

SDS provides a web-facing database, retrieval, and manipulation features in a hosted, Web-

facing solution. Cloud-deployed database solutions such as SDS can provide many benefits to

the enterprise, including rapid provisioning, cost-effective scalability, high availability, and

reduced management overhead. This paper provides an architectural overview of SDS, and

describes how you can use SDS to augment your existing on-premises data infrastructure.

2

Copyright

This is a preliminary document and may be changed substantially prior to final commercial

release of the software described herein.

The information contained in this document represents the current view of Microsoft Corporation

on the issues discussed as of the date of publication. Because Microsoft must respond to

changing market conditions, it should not be interpreted to be a commitment on the part of

Microsoft, and Microsoft cannot guarantee the accuracy of any information presented after the

date of publication.

This white paper is for informational purposes only. MICROSOFT MAKES NO WARRANTIES,

EXPRESS, IMPLIED, OR STATUTORY, AS TO THE INFORMATION IN THIS DOCUMENT.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the

rights under copyright, no part of this document may be reproduced, stored in, or introduced into

a retrieval system, or transmitted in any form or by any means (electronic, mechanical,

photocopying, recording, or otherwise), or for any purpose, without the express written

permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual

property rights covering subject matter in this document. Except as expressly provided in any

written license agreement from Microsoft, the furnishing of this document does not give you any

license to these patents, trademarks, copyrights, or other intellectual property.

© 2008 Microsoft Corporation. All rights reserved.

Microsoft, ADO.NET Data Services, Cloud Services, Live Services, .NET Services, SharePoint

Services, SQL Data Services, SQL Server, SQL Server Express, Sync Framework, Visual

Studio, Windows Live, and Windows Server are trademarks of the Microsoft group of

companies.

All other trademarks are property of their respective owners.

3

Contents

Introduction .. 4

Key Features .. 5

Typical Scenarios ... 6

Data Hub ... 6

Archival and Compliance... 8

Architectural Overview ... 8

Technology Stack .. 8

The ACE Model .. 9

Functional Overview ... 10

The SDS API ... 10

Manipulating Your Data .. 11

Querying Your Data ... 12

Securing Your Data .. 13

BLOB Support .. 13

Support for ADO.NET Data Services .. 14

Conclusion ... 14

4

Introduction
Companies providing Internet-based applications are facing many challenges today. Users increasingly

expect access to rapidly expanding amounts of data from anywhere, at any time, and from any device.

The size, scale of use, and variety of forms of data are expanding rapidly. Developers need to rapidly

build and deploy applications to keep up with these growing demands. Using the traditional on-premise

data management model, meeting these needs demands constant investment in and management of

servers, operating systems, storage, and networking. IT and operational staff must constantly monitor

the infrastructure to ensure that capacity, performance, and availability are maintained as data volumes

and user loads increase.

Cloud database services, such as SDS, provide an improved way to respond to these challenges. SDS is

built on three key tenets: storage for all data types from birth to archiving, rich data processing services,

and operational excellence.

From a developer's perspective, SDS offers a simple programming model, using standard Internet

protocols, and simple deployment options. SDS simplifies the process of creating, prototyping, and

deploying applications that integrate data across the enterprise. SDS removes infrastructure obstacles,

thereby giving developers more freedom to innovate and experiment with new ways of sharing data.

From the IT management perspective, SDS offers a systematic and secure cloud-deployed solution that

integrates with your on-premise assets and gives the IT organization oversight and control of distributed

data assets. SDS is built on the same SQL Server technologies already used and proven in on-premise

deployments to provide high availability, reliability, and security.

From the business perspective, SDS offers a cost-effective approach for managing data, with a flexible

consumption based pricing plan, near zero capital and operational expenditures, and the ability to

quickly and easily scale up or down as your needs change.

If you are planning to build applications on large or shared data sets, provide on-demand scalable data

storage, or augment your on-premise data infrastructure with low cost, rapidly provisioned cloud-based

storage, SDS can provide a robust and cost-effective solution.

SQL Data Services are an essential part of Microsoft’s Cloud Services strategy and architecture, as

illustrated in Figure 1.

5

Figure 1: Microsoft Cloud Services

Key Features
SDS offers a valuable supplement to on-premise data management models in the areas of flexibility and

scalability, reliability and security, and developer agility. Let’s begin by looking at some of these features.

Fast provisioning

When you use the traditional on-premise data infrastructure, your ability to prototype or roll out new

data-driven solutions can be slowed by the time it takes to deploy and secure servers, network

components, and software. With a cloud-deployed solution such as SDS, you can provision your data

storage needs in minutes.

Flexible development model

SDS exposes Web services that you can use to create, modify, query, and delete data entities. The SDS

Web services currently support the two primary standards-based communications protocols, SOAP

(Simple Object Access Protocol) and REST (Representational State Transfer). This ensures that you can

interact with SDS from almost any programming environment, not just Microsoft-based tools, and

provides cross-platform compatibility to support existing solutions and mashups. Data retrieval is

accomplished through a simple, text-based query syntax using the Language Integrated Query (LINQ)

style. SDS is also compatible with ADO.NET Data Services, and exposes an ADO.NET Data Services

interface.

Flexible data model

SDS provides a flexible data model that does not require schemas or fixed data types. Rather than

creating database tables with fixed columns, in SDS you can create data containers that can store either

homogeneous or heterogeneous data entities. This flexibility gives you the ability to handle any data

scenario, regardless of whether you’re storing schematized relational data or totally unstructured

collections of properties. This model is especially useful when you design applications in which many

6

different users will be providing data (such as content management or collaboration), or when you

create applications that many different people will use, each of whom will have somewhat different

data needs (such as customer relationship management).

Unlimited scalability

SDS enables you to store any amount of data, from kilobytes to terabytes. The service scales with your

data, so you can allow your data to grow without worrying about capacity limitations. A pay as you grow

pricing model ensures that you only pay for the storage you use, so you can also scale down the service

when you don't need it. When compared to a hosted or on-premise solution, this means that your

utilization is always optimal (never over-utilized so you can't meet demand, and never under-utilized so

you are paying for inefficiency).

You can harness this scalability to build the next generation of Internet-scale applications with

worldwide reach, but without the infrastructure costs and management overhead.

High availability

SDS is built on robust and proven Microsoft Windows Server® and SQL Server technologies, and is

flexible enough to cope with any variations in usage and load. The service stores multiple copies of your

data to ensure data availability and business continuity. Published service level agreements (SLAs) will

guarantee a business-ready service.

Secure data access

SDS offers secure data storage, together with secure access over Secure Sockets Layer (SSL) channels,

thereby enabling you to meet business and regulatory requirements for confidentiality and privacy.

Synchronization and offline scenarios

SDS integrates with the Microsoft Sync Framework to support occasionally-connected synchronization

scenarios. For example, using SDS and the Sync Framework, on-premise applications and client devices

can synchronize with each other via a common data hub in the cloud.

Typical Scenarios
To see how these key features of SDS can benefit organizations, let’s consider some common business

application scenarios.

Data Hub
In a data hub scenario, you typically want to enable different mobile and remote users to collaborate

using the same set of data. Consider an insurance company that has a large mobile sales force consisting

of more than five thousand people spread out across North America. Keeping customer and pricing data

synchronized across the entire sales force is a constant problem. The first part of the problem is getting

new customer contact information from the sales force into the internal finance systems. The second

7

part is getting new pricelist information out to the sales force. The insurance company needs a solution

that will:

 Keep each salesperson’s laptop up to date with the latest pricing information.

 Keep the corporate system up to date with new customer information from the laptop of each

salesperson, without the risk of exposing critical corporate data.

Currently, product and customer data is stored in a central SQL Server database in the data center. In

addition, employees in the sales team use an application that runs on their laptops and stores data in

SQL Server Express. The IT department does not want to open the firewall to the on-premise data center

to provide possibly insecure access from each salesperson’s laptop. The development team can provide

a safe and fully synchronized solution that uses SDS, by completing the following three tasks:

1. Create a data structure in SDS to store product data and customer data.

2. Create a Microsoft Sync Provider for the data center. This Sync Provider will keep product and

customer data synchronized between the data center and the SDS data hub.

3. Create a second Microsoft Sync Provider for the sales team’s laptops. This Sync Provider will

keep product and customer data synchronized between the field sales people and the SDS data

hub.

The following diagram illustrates this solution.

Figure 2: Conceptual overview of a data hub scenario

Product pricing data flows from the enterprise database, through SDS, to more than five thousand sales

people. Customer contact data flows from more than five thousand sales people, through SDS, to the

8

enterprise database. When a sales person’s laptop is offline, changes made to local data are tracked.

When the laptop’s Internet connection is restored, the Sync Provider enumerates these changes and

sends them to SDS. The safety of the corporate data center is ensured.

Archival and Compliance
Many organizations need to store historical data, such as financial records, business transactions, or

correspondence, either for future reference or for compliance with record-keeping regulations. Consider

a software-as-a-service (SaaS) vendor that provides compliance support to businesses, including

financial, government, healthcare, real estate, and franchising companies. They employ a document

management system for archived data that provides full text search, together with workflow

functionality and check processing. They must also track and report access to resources as required for

audit purposes. To lower data storage costs and help ensure rapid and secure access to records, the

company would like to migrate their customers’ archive data to the cloud.

Towards this aim, the company can create an account with SDS, together with .NET Services accounts

within the company space for each of its customers. Once a customer has an account, they can upload

any form of document, such as e-mail, scanned checks, and escrow documents. Some of the documents

are stored as binary large objects (BLOBs), while other documents are stored as structured data with

standardized data fields.

The uploaded content is fully indexed and enables the company to execute queries against BLOB

content, entity metadata, and user-defined flexible properties. Going forward, the company could

implement new services and capabilities, such as Optical Character Recognition (OCR) scanning or

workflow processes built using .NET services integrated with SDS.

Architectural Overview

Technology Stack
SDS is implemented as a mid-tier application. The service exposes SOAP and REST endpoints for

communication with client applications. Behind the scenes, SDS uses ADO.NET to communicate with the

underlying SQL Server-based platform. The following diagram shows a conceptual illustration of the

technology stack.

9

Figure 3: The SDS technology stack

To use SDS, you first provision an account. Within each account, SDS provides a simple, hierarchy-based

data model that consists of three layers: authorities, containers, and entities. An authority is a collection

of containers, and a container is a collection of entities. This is known as the ACE model.

The ACE Model
The following table shows the definition and purpose of authorities, containers, and entities.

Business Logic Layer Definition Purpose SQL Server Analogy

Authority Set of containers Groups containers for
accounting, security,
and co-location

A SQL Server instance

Container Set of entities Groups entities for
content and queries

An individual database

Entity Scalar property bag A unit of storage An individual record

Table 1: The ACE model

An authority is the top-level organizational element in the SDS data model, and it's the first thing you

create when you use SDS. Every authority is assigned a domain name system (DNS) name, which enables

you to access your authority through the REST protocol and effectively makes the authority a unit of

geo-location. You can think of an authority as being analogous to an individual SQL Server instance.

10

Each authority can contain any number of containers. You can think of a container as being analogous to

an individual database. However, while a traditional database uses tables and schemas to organize data,

containers impose no such restraints. You can use containers to store homogeneous data (entities of the

same kind and shape) or heterogeneous data (entities of different kinds and shapes). Instead of tables

and schemas, you use properties of the entities themselves to provide as much or as little structure as

your solution requires.

A container can contain any number of entities. An entity includes two types of properties: flexible

properties and metadata properties. Flexible properties are defined by the user and stored in a simple

string object dictionary, and they enable you to define data fields in any supported data type. Currently,

SDS supports String, Base64Binary, Boolean, Decimal, and DateTime types. These types are compatible

with the types used by SQL Server.

Metadata properties are standard properties that every entity has. You can use them to structure your

data and refine your queries. The following table describes the purpose of each metadata property.

Metadata Property Purpose

ID Provides a unique identifier for each entity.

Version Maintains a version number for each entity. Predominantly
used to synchronize cloud data from SDS with local data
sources.

Kind Allows applications to assign an arbitrary type to each entity.
The interpretation of the type property is currently application
specific. This property enables you to query specific kinds of
entities from heterogeneous containers, or to divide the
entities in a container into different kinds for special
processing.

Table 2: Entity metadata properties

For example, suppose you create a container to store data on cars for sale. You might use the Kind

metadata property to distinguish between new cars and used cars. You then could add flexible

properties as required to identify body types, engine sizes, and so on.

Functional Overview

The SDS API
One of the key design goals for SDS was to support programming from any development environment.

To enable this support, the service currently exposes SOAP and REST endpoints. The SOAP protocol is

familiar to many developers who consume Web services, is language and platform independent, and is

available in any development environment that provides access to a SOAP stack. SDS is also very well

supported by the Microsoft Visual Studio® tools. Developers typically use SOAP when developing for a

Microsoft-based environment, especially in enterprise applications where security and interoperability

are important.

11

REST, on the other hand, is a lightweight, HTTP-based protocol that uses URIs and HTTP verbs to

facilitate the exchange of data. As such, you can use the REST protocol from any development

environment that provides access to an HTTP stack. Developers typically use REST when programming

on a non-Microsoft platform, and when simple security and interoperability approaches are sufficient.

SDS has a natural REST implementation, because the principal HTTP methods map well to the key CRUD

(Create, Retrieve, Update, and Delete) database operations. The following table illustrates this mapping.

HTTP Verb SDS Operation

POST Create

GET Fetch, Query

PUT Update

DELETE Delete

Table 3: Mappings between HTTP verbs and SDS operations

When you create an authority, a DNS record is created to facilitate the use of the REST protocol. For

example, if you created an authority named london, you would access your authority at the following

URI.

https://london.data.beta.mssds.com/v1/

You can scope operations at any level of your data structure by building on this root URI.

https://london.data.beta.mssds.com/v1/<container-id>

https://london.data.beta.mssds.com/v1/<container-id>/<entity-id>

SDS will also support REST-based access using Atom Publishing Protocol (AtomPub) and JavaScript

Object Notation (JSON) through the ADO.Net Data Services ("Astoria") conventions.

Manipulating Your Data
SDS exposes service methods at every level of the data model. Regardless of whether you use SOAP or

REST, each operation follows the same pattern: you set the scope of the operation (service, authority,

container, or entity) and call the appropriate method. The following table summarizes the service

operations that are available at each scope.

Scope Service Operations

Service  CreateAuthority

Authority  FetchAuthority
 QueryContainers
 CreateContainer

Container  FetchContainer
 QueryEntities
 DeleteContainer
 CreateEntity

Entity  FetchEntity

12

 UpdateEntity
 DeleteEntity

Table 4: SDS scopes and service operations

If you use the SOAP protocol, you create a Scope object and pass this object as a parameter when you

call the appropriate method. If you use the REST protocol, the URI represents the scope of the

operation. You create an HTTP request to the URI, call the appropriate HTTP method, and write your

data to the request stream as an XML payload.

Querying Your Data
SDS uses a simple text-based query language, based on the LINQ pattern for C#.

You can scope queries to either an individual authority or to an individual container:

 You can query an authority for the containers within it that match a specified condition.

 You can query a container for the entities within it that match a specified condition.

An SDS query takes the following format:

from e in entities [where condition] select e

Note that the from e in entities format applies regardless of whether you are retrieving containers or

entities. In SDS, authorities, containers, and entities are all types of flexible entities.

To submit your query, you must specify the scope and then supply the query expression. For example, to

query for containers by using the REST protocol, you simply append your query to the authority URI as a

query string:

https://london.data.beta.mssds.com/v1/?='from e in entities…'

Similarly, to query for entities, you append your query to the container URI:

https://london.data.beta.mssds.com/v1/<container-id>/?='from e in entities…'

You can use comparison operators and Boolean operators to add conditions to your queries. The current

beta version of SDS supports the following operators:

Comparison operators > (greater than)
>= (greater than or equal to)
< (less than)
<= (less than or equal to)
== (equal to)
!= (not equal to)

Boolean operators && (logical AND)
|| (logical OR)
! (logical NOT)

Table 5: Supported comparison and Boolean operators

13

For example, to retrieve all the entities within a container that have a City property equal to Seattle and

the State property equal to WA, you would structure your query as follows:

from e in entities where e["City"] == "Seattle" && e["State"] == "WA" select

e

To query metadata properties, you use the dot notation instead. For example:

from e in entities where e.Id == "exampleID" select e

Simple join operations are also supported. The current query capabilities of SDS are a first step, and will

be extended over time.

Securing Your Data
SDS provides security at the account and authority levels. Accounts are secured by a Windows Live™ ID.

Each authority is secured by a single account name and password combination that grants read/write

access. Soon SDS will also have integration with Microsoft Windows® .NET Access Control Services for

richer authentication and more granular levels of authorization.

BLOB Support
We asked architects and developers which features they would most like to see included in a flexible

data infrastructure, and BLOB support was at the top of the list. BLOB support enables you to store

videos, images, and other files as binary-encoded data, making SDS a feasible data platform for photo or

video clip libraries, music players, document stores, and any number of other innovative applications.

The current beta version of SDS supports BLOBs of up to 100MB, and upcoming releases will support

larger BLOBs.

In SDS, BLOBs are defined in a similar way to other entities. Each BLOB entity has Id, Version, and Kind

metadata properties, although currently the Kind property has a fixed value of "Entity". However, BLOB

entities have an additional metadata property named Content. The Content property has three

attributes that you use to record information on how the BLOB should be handled.

Content attribute Purpose

content-type Specifies the MIME type of the BLOB content.

content-length Specifies the size of the BLOB.

content-disposition Optionally specifies how the client should handle
the BLOB. For example, Web browsers use the
content-disposition header to suggest a filename
when a user downloads a file.

Table 6: Attributes of the Content metadata property

Currently, you must use the REST interface to work with BLOB data in SDS.

14

Support for ADO.NET Data Services
The ADO.NET Data Services framework is a set of patterns and libraries that you can use to create and

consume Web-based data services. The framework was conceived to support two key trends.

First, Web applications increasingly rely on client-side technologies such as Microsoft Silverlight™ and

Flash to drive presentation and interactivity. The traditional post-back model used to bind server-side

data to client-side presentation is increasingly inadequate for these rich interactive applications.

ADO.NET Data Services enables the Web browser to retrieve and consume data directly from an

Internet-facing data source.

Second, Web-based mashup applications that aggregate data from many disparate sources are

becoming increasingly commonplace. ADO.NET Data Services can help you to both provide and consume

data for this type of application.

SDS will provide an ADO.NET Data Services-compatible interface. This interface is now available in

preview form. You can direct your client software to use this interface in the same way you would use

any Web service compliant with ADO.NET Data Services.

Conclusion
In this paper, we have introduced SDS and described its key capabilities and benefits. SDS is a cloud-

deployed database service that offers developer agility, application flexibility, and virtually unlimited

scalability, with a flexible, cost-effective delivery model. The robust underlying architecture provides

reliability, high availability, and security, while support for the most prevalent Internet communication

protocols ensures ease of deployment and use. We have examined some scenarios where SDS can offer

real business value to customers, such as data hub solutions and archival and compliance systems.

We’ve also taken a look "under the hood" at the architectural and programming models that provide the

core functionality of SDS.

For more information, please visit:

 SQL Data Services Portal

http://www.microsoft.com/sql/dataservices

 SQL Data Services Dev Center

http://msdn.microsoft.com/en-us/sqlserver

 SQL Data Services Documentation

http://msdn.microsoft.com/en-us/library/cc512417.aspx

 SQL Data Services Team Blog

http://blogs.msdn.com/SDS

http://www.microsoft.com/sql/dataservices
http://msdn.microsoft.com/en-us/sqlserver
http://msdn.microsoft.com/en-us/sqlserver
http://msdn.microsoft.com/en-us/library/cc512417.aspx
http://msdn.microsoft.com/en-us/library/cc512417.aspx
http://blogs.msdn.com/ssds

